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A Pareto genetic algorithm is applied to the optimization of Iow-thrusl
interplanetary spacecraft Irajectorie.s. A multi-objective, nondominatecf
sorting genetic algorithm is developed following existing methodologies.
A hybridized scheme is designed integrating the Pareto genetic
algorithm with a calculus-of .variations-based trajectory optimization
algorithm. “families” of Pareto optimal trajectories are generated for the
cases of Earth-Mars flyby and rendezvous trajectories. A novel trajectory
type generated by the Pareto algorithm is expanded to develop a series
of versatile, high-performance Earth-Mars rendezvous trajectories.

INTRODUCTION

Low-thrust Trajectory Optimization
In recent ~~iir~, pressure [o reduce the costs of interplanetary missions has led to a

hcightcrwd emphasis on designing missions with shorter night times, smtiller launch
Y’chicks, and simpler flight systems, These requirements have renewed interest in low-
[h rust propulsion syste.nls due to their high propellant efficiencies; however. the need [o
optimize the continuous thrust profiles inherent to these. sysrwns presents new challenges to
trajectory designers. Trajectory optimization techniques cum?.ntly ;n use o.eed only model a
series of cliscre[e.even[s: launch find planetaly flyby times (including characteristics of the
tlyby [trajectory), plus wry deep space maneuvers which mfiy be required. This is by no
means a trivial exercise when complicated multiple gravi[y-a$sisr [trajectories Me
considered. but the additional rcquircmen[ of optimizing a continuous thrust profile
severely strains. and in many cases exceeds the capability of traditional ttxhniques.

Project Overview

Currenr Working methods for ]okv-thrust trajectog” optimization Rrc calcu]us-Of-
variations- txsecl. This forml]lation typically has difficulty with longer, mow complicated
trajectories, and can expend large amounts of’ time execlltillgillefficie]lt searches. An On-

going joint research Yenture being conducted between the Jet Propulsion Labcwatory (,JPL)
and the tlniversity Of I]lin(}is at tJrbana-Champaign’s Computational Astrodyrxamics
Research Laboratory (.UIUC CARL) is investigi]ting. alternative methodologies in an
attempt 10 discover ne}v~ more robwt, d more efficient optimization algorithms.
Automation of the optin{ization process using stochastic s~i~~h [echniques (e.g...
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simtllatcd mmca]ing, and genetic algorithms) to dri\’~ (IICcurrent optimization software is a
majortopic ofrcsearch.

In this paper. a Pareto genetic a]gori[hnl is developed fo]]owill: ~xisting
ftlfXhOdO]OglCsl to pertorm a multi-objective optimization for low-thrust Orbit k.WIsfet3.
expanding the preyious work of Ref. 2. The optintizat]on techniques discmssed address
(he problem of low-thrus[ [rajec[ory optimization, and provide for the generation of optim:d
sets or “~am]lies” of these trtijectories. Generation of a trajectory fatni]y is accomplished
by smling the population according to an individual’s Pareto optimali[y. Such sets
illustrn[c lhc relationships between different flight characteristics, and provide compromise
solutions when n~axinllim pert’ormancc (j.c. mass tjelivc.l”edto &stintition) is one Of several

requirements. Additionally, the nmv method provides increased robustness through its

inherent separation of objectives and eliminates the objective conflict3 which arises from
classical techniques in\olving scalarizatio]l of rnultiplt objpctivts, where improper
assignment of weighting factors can result in a bias towards ~~rtain objectives. The Pareto
genetic a]g~rit~ is (hen ~~n~bin~d \~ith e.~isting .lpL traje~t~~~ Optinlization soft\~c~e in a

hybridized manner to ~IQdLl(X A mcm informed search, alo~g w’ith fanli liar and ukab]c
results.

PARETO OPTIMIZATION

Multi-Objective Optimization

Multi-objective optimization, as its name implies, differs from single-objective
optimization in that the intent is to optimize a system \vith more than one objective. As
in single-objective optimization, the objective(’s:) may have any number of equality or
inequality constraints imposed upon them, This can bc represented nlathematically as4.

hlinimize/Maximize .~{x,) i=l’1 N*“,....
sllbj~d to g,(x)!20 j=l? ~........

h~(x) = O ~=l? K!-!..., (1)

Ra(hcr than searching for the solution which yields the globally maximal (or n~inin]d)
vatue for a single objecti\w. the “best” solution is found by simultaneously optimizing
several objectiy’es. These types of optimization problems have traditionally been solved
by averaging each ubjec[ive \vith a wtighting factor, [hen combining the objccti\~es into a
single scalar objective. Such reduction techniques eliminate [he need for a more complex
n~ulti-objecti\w algorithm. but introduce new parameters in the fotm of weighting fhctors.3
Individual solutjons are highl>~sensitive [O the tnagnitudes of’these weighting factors. The
LIser must become familiar \vith the exact relationship between objectives in order to
determine the proper wrighting values that will yield the desired result. Iktennination of
the correct \veighting fhctors can. in fact. become an optimization process of its own.
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In addition. the result of the optimiztltio]] will be a single solution rather than a set
of compromise solutions illustrating the relationship between differenL objectives. ‘l’his is
:tcceptablc for cases in ivhich optirnality of all object i~’cscoincide in the same solution,
but in most cases \vhcrc adjustments beneficial to one objective are detrimental to others.
SLIL’hu technique provides onl)’ a single point on what may be an expansive “front” of

pcmibl.e solutions. In the case of genetic algorithms in pallicular. such a formula[ic)n fails
to take advantage of the population-bawl nature of the technique. It therefore becomes
desirable to develop a more robust multi-objective algorithm, capable of identifying the
trades between o&jectives and able to make better use of the population-based 6A to

prodlwe sets of optimal solutions.

Genetic Algorithms

Genetic algorithms are an optimization procedure based on natural selection and
Darwitian genetics.$ Thtsc algorithms differ from the more traditional optimization
techniques in that the)’ work with a coding of the paramettr set (usua]ly binary) instead
of the para~.]leters themselves, they search from a population of poi[]ts instead of a single
point, they use only the objective function e\/aluation instead of derivati\’es or other
auxiliary Icnotvledge, and they use probabilistic transition rules instead of cieterministic
rules. A population Of individual solutions is evolved over a series of gencraticmal cycles,
each undergoing alterations to their respective parameter set, or “genotype,” and fitness
value, or ‘“phenotype.’-

The genetic algorithm used in this paper employs [he standard operators of
selection, cross-over, and mutation to pcrfom~ the evolutionary search. Selection is the

process of choosing two solutions orI which cross-o\~er of information may occur. Cross-
over is used to create new solutiol] strings or ‘-children” from existing ‘:p:tient” strings. A
string is a bintary representation of all the indcpemient \~.ariables. Through cross-over,
lmneficia] information eIIcxxIed in (hc p:wents have a chance to propagate to fhture
solutions. The role of mutation is mainly that of protecting the population of solutions
against irrevocable losses of’ potentially helphl information that may be lost in weak
individuals. Mutation iilso protects and provides diversity within the population.

‘iNiching” or “fitness sharing” is a supplemental strategy ~~l]ich is also used to

promote di\’ersity. In this prcKx!dLuY.,so)utions are penalized according to their degree oi.
similarity to others in the population in an attempt to distribute members ovtw Iarg,e
portions of the search space and avoid premature con\’crgence to a single solution. The
population is examined on a per individual basis to determine the number of other
mctnbcrs that reside within the [neighborhood of the current examinee. l-he size of this

neighborhood is de(cm~ined by the nicbiwg control parameter. ~Sh3~~.A penalty vdtlc is
associated \vi[h txch inditi(tual residing within [his llei~hborhood. The magnitude Of the
penulty is govcmed by a sharing function \Yhose value falls off tis proximity to the
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exa]l~i[~e.edecreases by the pmvcr a. the second of tlvo llicl~i]]g]jarameters. A Vi3]UCof

c(= I corresponds to a linear reduction in rnagni[ude, \vith the effective penalty

:i~>pro:ichitlgzero as indjviclual pmxinmy approaches the neighborhood boundary. ~jh~~.

The number of indi\:iduals residing ivithin this defined neighborhood and their
correspondin~ pcnaities am tallied, and the current examine-ens fitness is penalized by an
amount proportional to (hat number at the tinclof each generational cycle. Pot a more
complete discussion of genetic algorithms and niching, see Ref. S.

Pareto Optimality

Pareto optimization is the principle of optimizing multiple competing objectives.
The problem is essentially one of finding optimal solutions based on criteria that have
inverse relationships. The problem was succinctly described by Edwin Dean(’:

A Pareto optimal solution is not unique, but is a member of a set of such
points w]lich are c.~nsid~red equally good in terms of the vector objcctivc.

This space may be viewed as a space of compromise solutions in ~vhic.h
each objective could be impro\’wl upon: but if it \vas, it would be improved
at the expense of’at least one other objective.

Another ~vay ot-stating this would be to say that a solution is Pareto optimal. or

“nondominated:’$ for a given set of objectives if there is no other existing solution which is
superior to that solution in (z1lobjectives, 1( a sol ulion exists which is superior in .sIorne

objectives, then that solution tnay constitute a point on a front of Pareto optimal
solutions. “f’ake for example the problem of minimizing both coordinates for a set of
points. ;(0 s) (1,3:),(2,4)}.. ..-.?., Point 1 is dominated by points 2 md 3 in its second

n wld 3 with respect to the first coordinate, andcoordinate: ho~vever, it dominates points -,
therefore is nondominated. Point 2 is dominated neither by point 1 nor poin( 2 since it is
superior to these two \vith regard to its second coordinate, and thus is UISOnondominated.
Point 3, w’bile superior to point 1 in its second coordinate, is dominated with respect to
bofh coordinates by point 2, the.re,foreit is a dominated individual and not Pareto optima].

The Pareto Genetic Algorithm
The algorithm de.visecl in this study is based on the concept of nondominatecl

sorting originally conceptualized by Goldbergs and developed by Srit~i\’as and Deb] ~M the

lNondominated Sorting. Genetic .41gorithm (NSGA). The NSCIA is not an entirely new
optimization algorithm, but rather a modification to the iltness evaluation procedures that
exist in standard genetic algorithms. It is in some sense a supplement to a genetic
algorithm that allou’s for a more effective means ofmulti-objecti\/e op[imiza[i~n.

The hT!3GAusm the concept of nondonlimmce to sort through a population of

possible solutions, assigning each member to a Pal-elo optimal ‘%wnt’” according to their



level of not-dominance. The process consists of two iterated steps. The. population is
first sorted. and those individuals that are nondominated are assigned an m~ificial tltncss
associated with their lmd of Pareto optima lity. For the first iteration of the non-
dominated sol~ing routine, the tl(ness ialue assigned establishes non-dominated nwmbers
as possessing the highest Ic\rel of Pareto optimality ill the population at large. Af’tcr
assignmel)t to a front, ~ltncss sharing (or niching) is appl; ed to these individuals where
artificial fitness is adjusted ac~Ording to solutions+ proxinlity to one another in an attempt
to evenly distribute individuals across the Pareto front.

After sharing, the minima] fitness in the current flont is detem]ined. This fituess

is [hen slightly reduced and used as the initial a]litlcial fitness for tlw ncyt fron[ in the next
iteration of the sotling routine. During this iteration and all Subsequent ones, individuals
previously tagged as non-dominated and assigned to a specific front are excIucied from
Cxarnination iind the remtiining subpopulation is examined to determine, the next subgroup
of’ non-dominated solutions, The nondominatcd sorting process continues this iterati\’e
evaluation of subpopulations until all individuals in the population are assigned to a
specific front and given a fitness value.

The benefits of incqmrating a Pareto search algorithm in the tr:~jectOry
optimizatio~) process are tw’ofold: i.) elimination of the problems encountered in c]assictd

multi-objective optimization methodologies such as objective conflict, ,and ii.,)
development of’ a Pareto optimal front of solutions, pro\’iding an array of compromise
solutions. When applied to the population-based g,ene[ic ~j]gOrithn]~ these Pareto

concepts should enable automatic generation of Pareto optimal solutions. 1n the context
of spa~e~ri~ft trajectory @ im ization discussed in this study, a Pweto genetic al~,orithm
should provide the mission designer the capability of generating “families” of optima]

trajectories illustrating the trades between defined objectives.

VERIFICATION OF ALGORITHM PERFORMANCE
A setof’testfunctions comprised of those found in the literature as well as some

of original design were used to test the NS(jA. Six diagnostic test functions in all were
used: three functions from the Srini\as and Deb test suite to test replication of
performance, along writh three new ftlnctiOll~ designed to test previously undcn~~nstriitd

capabilities’ required for the trajectot~ optimization \vork in this study: optimization of
prOl>lems ~vi[ll l~lore than t\vo objectives. and with objectives of both minimizing a}~d

maximizingtype. In orcler to thcilitate comparison, \alues for main control parameters
were assig,ned the same valLiesas those used in the original NSGA study. 1’7

The test fbnctions considered \wrifled that the \ersion of nondominated so]ling
algorithm developed in this study perfolmls accurately. Tests to ide.nti& Pareto optimal
regions for more than two objectives. as \vell as thow to verifi the N!SGA’S ability tc~
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handle conlbinations of optimiz[ition types w’cre successful. For flu-ther details of these
\“erificat]on tests. see &.f. 7.

NSGA/SEPTOP HYBRIDIZATION

The algorithm formulated for the application of trajectory optimization dots not
consist SOl~lj7 Of th~ Pareto genetic algOritl~l~lcoup]ed \\~ilh a function tvalualion

subroutine. It is a hybridization of the nondmninated sorting genetic algorithm and the
calct]lus-of-\’.tiatiol~s-b:tsed triijectory optimizer, SEPTOP.S The NSGA is L[sed as a

dri vex-for the SEPTOP soft~varc. essentially automating the optimization process by
acting as a kind of ’”smart” user.

A Brief Description of SEPTOP
SEP”rOP f,Soiar Electric propulsion Tr~i.ectol~ Optimization Program) is a

preliminary mission planning tool that uses a two-body-, Sun-centered. low-thrust solar-
elt?ctric propulsion model. Classi.crd C’alc\dus-Of-Variations ~COVj is used to obt:iin a
maximum final (burnout) nJass, resulting in a Two-Point-Boun&wy Value Problem
(TPBVP). The user provides initial estimates for costates (Lagral~gell~ultipliers) and the

state and costarc differential equations are fonvard integrated. Terminal constraints cm
the sta(es and costates that result from the COV formulation must bc satistled. The
eonve.rgence of SEPTOP to an optimal trajectory can be highly dependent cm the Lwr’s

initial guess and the relative difilculty of the mission, As the number of intermediate
planetary flybys and total number of re.~’olutions about the sun is incrcascd. the user’s
initiai gLlesSmust move closer to their converged values for the TPBVP to be succt?ssfu]]y
sol Ved.

The Ncmdominated Sorting “Memetic” Algorithm

The NSGA evolves populations of individuals representing possible trajectories,
\~ith input parameters for $EP”I’OP being encodcci as each indi ifidual’s genotype. These

ilqmt p&mleters include the Lagrange multiplier values associated \vitl~a given trajecioly,
as WC1las the total time of tlight. Todividua] fitness is evaluated through a call to SEPTOP
using, the input parameters encoded ~vithin. SJ2PTOP is run for a set number of iterations>

et’~ect ivel! executiog a loca]ized search for each member in an attempt to better identify
any basins of attractions w’hich might exist in the individual’s immediate vicinity. The
improved fitness - if any improvement was seen - is returned to the NSGA in the form of
an objective vector containing the values for each objective in the rnulti-objective
optinlization. The individual is thus assigned a new phenotype. The new SEPTOI’ input
pa]”ameters associated with the improved so]ut ion are I@ lt!tLIIWdm the individual .s ne\v
parameter set. i.e. gcnohpc. This is done in m attempt to maintain a gwater mnount of
diversity in the population’s gcme pool.

The procedures just cataloguecl describe what might be termed a “menwtic’.
algorithm - a genetic algorithm coupled with a non-genetic localized search algorithm to
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improve indiy’idu:il charactc.ristics9 - employing a “B:dd\vinian Jearning s(ra(cgy.’”” This
terminology is cicriiecf from the study of’ mcmctics which theorizes that ideas can evolve
in ways analogous to biological evolution. ]1 The algorithm used in this study n~iSht then
be labeled the ncmdominated sorting n?emcfic al~orithm. The specillc characteristics
returned from the improved individual constitute the vpe of learning strategy
implemented. In a Baldwinian learning strategy, ordy the improved phenotype is
recorded,

W’ithin this structure, the SIYTOP soft\vare is prog,ratnm;d to return the

fbllowing four parameters: mass deiivercd, time of flight. number of heliocentric
rc\wlutions. and SEPTC)I>con.ver~ence error (a norrmdizcd representation of the degree of’
crmvergence). Three of the parameters - mass delivered, time of flight, and number of

heliocentric revolutions - are rnodtded as objectives, and the fourth - SEPTOP ccmvergence
error - rnode]ecl (is one of three. constraints. “rhe additional t\vo constraints limit
population members through user-specification of’ a trajectory type., establishing upper
ancl lo\\’er bounds on the allowable number of hcliocenttic revolutions for a given
trajectory. This added control enables the user to implement any prior understanding of

the “physics” of the problem to narrow the search space - \vhich might othmvisc bc
overly expansive - to a region that one expects the solution to Ed]. Trajectory types are
detined by increments of one half of a heliocentric orbit, e.g. type 1corresponds to 0.O-O.5
revolutions, type 11to 0.5- 1.0 revolutions, etc. These constraints are applied at the encl
of the evaluation procedure using appended pena]v terms.

The trade relationship bet\veen the t\vo objectives, mass delivered and time of
flight. is the key focus of’ this study. The addition of the third objecti\”c of’ maximizing
heliocentric revolutions is employed as a strategy for obtaining viable solutions. When
the program is initiated, the solution space is populated almost exclusively with
individuals far from convergence (i .c. trajectories whose final states do not cIosely match
the final boundary conditions). Beginning with a fixed initial nmss. many trajectories exist
\vhich may be evaluated xi Pareto optimal despite their degree of’convergence due to \’eq’

short flight times and /or minimal thrusting. These are Minterest ing sol uticms. but rrMY
dominate the solution space without additional control. Using the SEPTOP convergence
error term as a constraint is the supposed safeguard against such erroneous results:
howe\’cr the nature of this parameter is such that decreasing amounts of’ information are
gainecl from it as a solution moves further from convergwtce. As a result, using the
convergence err-or as a constraint provides little guidance at the beginning stages of the

search, In order to increase the selection pressure placed on individuals wilh more

appropriate ch.mwteristics and atmid undesirable premature convergence, a third objective
of maximizin: heliocentric revolutions is added. This provides an objective in\’ersely
related to tirnc of’flight. and produces a more balanced Pareto optimization.
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RESULTS

Control Parameters
Two test cases were run to pro\’ide proof-of-concept for the hybridized method.

The control parameters used in each case arc Iis(ccl in Ttible 1. Selectiou and crossover
operators. ~vere implemented \vith no mt]ti~tion in order to m,aintain consistency with

previous testing. Niching parameters were calculated based upon the methods providecl
in Ref. 11, setting q. the inclu~ed number of niches, to 15-- the same value proportional (o
pop~]lation size as in the diagnostic test functions. Existing methodologies’~ for

establishing CJ~l,3,Carc only rough guides however, since they require lcnowlcdgc of the

search space for each optimization pr~blem a priori, Guidance h population sizing and
maximum generation detem~ination for ,hvbridizeci methods was found to be nonexistent

at the time OFthis study, therefore populaticm sizing and number of generations run \\’ere
determined experimentally through both trial and en-or and limits On processing capaci~.
A Delta 117925 launch \’chicle was used for both test cases along with a single 30 cm
xenon engine for spacecraft propulsion. .$ 3.0 Icw’solar ‘array \\ ’asused for the flyby case,
and a 5.2 kw solar array for the rendezvous case,

Table 1
Control Parameters for Pareto Trajectory Oplimizations

Control Parameter Parameter Value
Population Size — 150
String Length 80
Probability of crossover 1.0
Probability of mutation 0.0
OJurb 0.033
a 2.0
Number of parameters 8
Number of objectives 3
Number of constraints 1

Earth-Mars Flyby
The first case \vas W1Earth-Mars ilyby trajectory. Trajectory types were

constrained to ppes 1-11 (0.0 to 1.0 heliocentric revolutions). The time of tlight
pararmtcr was bound betwven approximately t\vo anti twenty months, a time span
predicted to be large enough to encompass the designated tmjcctory types. Launch date
was fixed at september 1, 2005, a date close to the optimum ballistic launch date.

“>0 generations, resulting in the t’a-mily ofThe genetic search wm executed for -
Pareto optinml trajectories illustrated in Figure 1. For the purposes of’ this study. the
term ‘-family-’ rctkrs to a grouping of solutions in the Pareto space, each related to one
ano(hcr throug,h a continuous Pareto culwe. Recall that for an individual to bc Pareto ~
optim;tl means that J1Oother individual has a ]owcr costs in al] three objective criteria
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(mass. time of tlight and heliocentric revolutions.) The solid line. sho~vn
indicates the. actual F’wcto curve. generated by iterative calls to SEPTOP.

on Figure 1

Individuals
reprcxnting converged Pareto optimal trajectories are indicated with an x. Solutions for
which tr~jectory plots have been included arc adciitionall) labeled by individwd uumber.

Of the 150 members of [he population. 112 were determined to be converged Pareto
optimal trajectories. These 112 solutions reside in an e~enly dishibuted mcmner on the
actual Pareto curve, demonstrating the hybridized NSGA’S ability to discover the Pareto
relationships for a given low-thrust trajectory optimization problem. .

::::.’. .

Figure 1 Pareto front t’orRirtti-Mars flyb) trajector) case at generation 20

The addition of the heliocentric revolutions objective. ivhi}e an effective strategy
for producing viable solutions, also allows for the g,eneratirm of solutions which are not
Pareto op[il]~al with respect to the trade stlldy strictly between mass delivered and time

of flight. This thirci objective allo\\Is for the generation of trajectories w’ith maximal
twolutions, but inferior performance and times of flight. It can be seen from Figure 2 that
several of the trajectories generated are non-Pareto Optima] ~vith respect to the
perfommnce vs. transfer time trade, They it~habit the far right end of the time of ilight

spectrum (transfer time > 1.25 yrs.) At this point of the graph, performance falls off as

transfer time continues to increase. Trajectories in this reg,ion arc of little use since

i~lternativcs exist which deliver greater payloads in less time, These s~luti~nsf ho\veverr
arc easily identified for exclusion from tinal c.Onsi&ratit>n,
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Figure 2 NMSSdt4ivered }’s. time of fright for Earth-Mars flyby Pareto optimal (Ixjectories

Figures 1 and 2 re\wal that the optimization produced a family of solutions
defining a Ptieto optimal front \vhich exists as a smooth curve in the three-dimensional.
Obje~tiVespace rather than a surface of Pareto optimal points. Figure 3 illustrates the
indexed individuals. wlmw conesponciing trajectories span the entire family of solutions
along the P:ireto curve, .4s is the case for all trajectory plots to follow. solid line
segments represent thrusting arcs, and dashed 1ine segments coast arcs. From these three
figures, some interesting observations can be made.

The Pareto front is rooted at indi\zidua] 8. As transfer time increases, mass
deli vered rises sharply: with gains in performance tapering off as more significant thrust
tams begin to appear in the vicinity of individual 91. It can be seen from Figures 1 and 3
that the first pmlion of the Pareto front - the section of the curve approxinlately lxt\vccm
individuals $ and 41 - correspol~.ds to tvpc I triij~ctori~s c.onsistillg of no more than 0.5
helicwen(lic revolutions, with tlight paths bound by Eanh and Mars orbi(s. Performance
again picks up following the inflection point at 0.5 rt\’olu(ions (().$ yrs. ), m outbound
trajectories transition to inbound. “I-he second porlion of the front acquires maximum
perf’ommnce at individual 63 \vith a deli\w.w.d mass of 913.% kg. Beyond this point,
performance decreases sharply. and individuals are no Iongcr nondominalwl \vith respect
to the objectives of mass delivered and time of flighr.
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Figure 3 Earth-Mars flyby trajectories for indexed indis.iduals

Earth-Mars Rendezvous

The second set of results are those for the optimization of’E.arth-h4ars rendezvous

trajectories. Trajectories were restricted to types II through W (0,5 to 3,0 heliocentric
revolutions). flight time bound bet itwn approximately 10 months and 3.5 years. and
launch date again fixed at September 1, 2005. Figure 4 ilktrates the population of
converged Pareto optimal trajectories at
population members were nonciorninated.

1~(”.)
1

gel~~ration J ~, In this case, ~1 if the 150

1.5

-=. .
, -..

‘%..: ~:-” 4
=-””,, ~., z;,

,’ ‘“/ 25
,:=. .4< “2-.,

:{ 1

HACSMMIIWRwd~tit,m
Tmm(q,l’tw(J-s,}

Figure 4 Pareto fronts for t!arth-Mars rendezvous trajectory cuw at generation 30
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Three distinct groupin~:sc~fI’i~etc) optim:tl individuals were. identitleci, l“hese

El “CJ

were again defined by curves in the three-dimensional objecti\e space. with an outlying
individual (inciivichl 147) indicating a t’ou.rth area of Ptireto optinmlity. Figure 5 reveals
the largest and most evenly distributed fami Iy in the Pareto space - bound by individuals
44 and 36 - to be the largely dominating subgroup, Al I but one of the trajectories
comprising the other three families are not dominated by members of this group with
respect to the mass delivered Ifs. time of flight trade. As in the tlrst trajectory case, these

individuals arc a smail subpopu[atjon which can be easily identified for exclusion from
hid consideration since alternative solutions exist \vhich deliver greater payloads in less

titnc.

“I’r., nsli.w Ttmv (yr* /

Figure s Mass dcli~crcd VS. timk of flightfor Efirtll-Mars rendezvous Pareto optim:ll trajectories

Beginning\vith indi\.idual W (Figure 6) fiorn tbe largest family with a delivery
mms of 685.2S kc. performance increases rapidly with increasing transfer time. This

pw%mnance plateaus as a coast arc. appears in the trajectories neighboring individual 73.
.ami deli \ery masses reach approximate] y 862 kg. Only very small improvements in mass
delivered we seen on the section of the cwwe between individuals 7? and 72, A second

coast arc appears producing a burn-coast-burn-ccwst sequence for these solutions. In the
vicinity of indit’idlial 72, an additional burn is appended cr~i~tkg bum-coast-bum-coast-
bum trii;WtOrif2Sid p~rfbI”IntiIc.eAgain rises,pefio~manct? for this SLIbgI”OLIp01”SOILl[iOrlS

approaches itsmaximum as trajectories[ra[lsitionback to a burn-coast-burn structure at

indivklual 36 with a mass delivered of8W. 10.
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Figure 6 Representative trajectories for Earth-Mars rendezvous dominant family
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Figure 7 Representative tr~jcctories for Earth-Mnrs rel)dewo(ls novel family

The small hnily of solutions whose population resides between individuals 132

and 22 is als{j wc~r[hy of discussing due [O the high perfon]lance and novel trajectory

structure (Figure 7) existent in its members. These solutions begin by takin~ an iti\vard

13



direction and spend some time performing heliocentric revolutions within Or j ust wtside.
()!’ Earth orbit before spiraling out to Mars. [n thmc subjects, two revolutions are made. to

increase the spacecraft’s orbit inclination to more closely match that of lvlars” before the
trajectory progresses out\vard. A signific:m[ increase in performance is seen as flight
times incrcasc. The minimum mass delivered for this subset of the population is 773.33
kg (individual 132,) \vith a maximum of 911.78 (individual 22) - the higfiest payload
deli\rery in the population.

Earth-Mars Rendezvous On-Demand
The high performance obtained by members of (his Parc?o family of novel

solutions prompted further in\ ’estigaticm into the potential of such a trajec(op class. The
control parameters for the trajectory \vith the highest performance (individual 22 \\;ith
911.7$ kg) \vcrc extracted, and the SEPTOP sofi\vare run to compute the perfimnance

statistics ibr a trajectory of this type over a rauge of launch dates spanning approximately
onc Martian syrmdic period. For purposes of comparison, the same control paramckrs
were alSO used to generate series of trajectories over the sane range of lammh dates with

transtkr times of 1.5, 2.5. .ami 3.0 years.

Results of this analysis are summarized in Figure S. The dashed curves in the
tigure represent multiple revolution SEPTOP solutions (2 and 3 revolutions) possessing
flight times ranging from 2.5 to 3.55 years. The solid curve providw a comparison with a
more typical SEPTOP sol uticm: 1.,5years and less than 1 heliocentric revolution. These
cLW\esreveal a continuous period of launch dates for a ilight time of 3.55 years, all \vi~h
fins] spacecraft mass greater than 900”kg. Shorter tlight times with very large @Lit not
continuous;) launch periods are also a\”ailable, such as the 2.5 year curve which has a
hlunch period close to one year with performance greater than 900 kg.

r——————”
I

Figure 8 Earfli-Mnrs Rcndczx’ous pcrformhnce for various flight times
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CONCLUSION

Ba~cd upon the results seen in this study. the hybridization of a Pareto genetic

algorithm with a calc~~llls-of-vwiatiol~s optimizer as a local improvement procedure
proves an effective method for generatil)g sets of optimal interplanetary Iolv-(hrusr
trajectories. Families of optimal trajectories were obttiined in each test case. with family
members related throush continuous Pareto curves. Best results \vere obtained for
simple, low-rev trajectories. As trajectory complexity increased, populations were
distributed less evenly over apparent Pareto curves. ‘l”hese population distributions may
improve with further generational cycles. discovering new portions of Pareto curves or
SLut’aces,or filling. in those partially populated at algorithm temlination.

The algorithm also proved useful in producing novel trajectories. The new

sol utions discovered possessed both non-intuitive stmctures and vel? high per~onmance,

Unique trajectories found by the gcnetk search were used to generate a new and versatile
trajectory class with a continuous period of’ Iaumch dates and performance greater than
900 kg.
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